Abstract

A preference for several amino acids is observed to occur at particular positions of cationic α-helical antimicrobial peptides (AMPs), which ensures the formation of amphipathic regions once they assume their correct secondary structure in membranes or membrane-mimicking environments and makes them active against pathogens. This study determined the effect of alanine mutations on the secondary structure and bioactivity of lyp1987 (GRLQAFLAKMKEIAAQTL-NH2), a cationic α-helical AMP obtained from the venom of Lycosa poonaensis which exhibits broad range activity against Gram-positive and Gram-negative bacteria with micromolar minimum inhibitory concentrations (MIC). CD spectroscopy revealed no significant difference in the secondary structure, with all alanine-substituted analogs exhibiting predominantly α-helical structure in buffered 2,2,2-trifluoroethanol solution. Alanine substitution at Glu12 and Thr17 increased the activity of lyp1987 against Gram-positive and -negative bacteria, while alanine substitution at Lys9 increased its selectivity against Gram-positive bacteria. Further investigation can be done to determine positions and substitutions that will give less cytotoxic analogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.