Abstract
The WRKY transcription factor family has been associated with a variety of plant biological processes, such as biotic and abiotic stress responses. In this study, 13 wheat TaWRKY DEGs in transcriptome data before and after drought stress, namely TaWRKY1 to TaWRKY8, including various copies, were identified and classified as Group I, II, or III. TaWRKY1-2D overexpression enhanced drought tolerance in transgenic Arabidopsis. Moreover, the AtRD29A, AtP5CS1, AtPOD1, AtCAT1, and AtSOD (Cu/Zn) genes, which are related to the stress response and antioxidant system, were significantly upregulated in TaWRKY1-2D transgenic Arabidopsis under drought stress. TaWRKY1-2 silencing in wheat increases the MDA content, reduces the contents of proline and chlorophyll and the activities of antioxidant enzymes, and inhibits the expression levels of antioxidant (TaPOD, TaCAT, and TaSOD (Fe))- and stress-related genes (TaP5CS) under drought stress. Yeast two-hybrid screening revealed TaDHN3 as an interaction partner of TaWRKY1-2D; their interaction was further confirmed using yeast two-hybrid and bimolecular fluorescence complementation. Furthermore, TaWRKY1-2D may play essential roles in wheat drought tolerance through posttranslational regulation of TaDHN3. Overall, these findings contribute to our knowledge of the WRKY family in wheat and identify TaWRKY1-2D as a promising candidate gene for improving wheat breeding to generate drought-tolerant wheat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.