Abstract

Histone methylation is actively involved in plant flowering time and is regulated by a myriad of genetic pathways that integrate endogenous and exogenous signals. We identified an F-box gene from wheat (Triticum aestivum L.) and named it TaF-box3. Transcript expression analysis showed that TaF-box3 expression was gradually induced during the floret development and anthesis stages (WS2.5–10). Furthermore, ubiquitination assays have shown that TaF-box3 is a key component of the SCF ubiquitin ligase complex. TaF-box3 overexpression in Arabidopsis resulted in an early flowering phenotype and different cell sizes in leaves compared to the WT. Furthermore, the transcript level of a flowering time-related gene was significantly reduced in TaF-box3 overexpressing plants, which was linked with lower histone H3 Lys4 trimethylation (H3K4me3) and H3 Lys36 trimethylation (H3K36me3). Overexpression of TaF-box3 in Arabidopsis was shown to be involved in the regulation of flowering time by demethylating FLC chromatin, according to ChIP experiments. Protein analysis confirmed that TaMETS interacts with TaF-box3 and is ubiquitinated and degraded in a TaF-box3-dependnent manner. Based on these findings, we propose that TaF-box3 has a positive role in flowering time, which leads to a better understanding of TaF-box3 physiological mechanism in Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.