Abstract

Root secreted acid phosphatases and organic anions are widely perceived as major players of plant phosphorus (P) mobilisation from the rhizosphere under P limiting growth conditions. Previous research indicated that other mechanisms play a role, especially in species with fine roots, such as wheat. In this study we characterised the plant-derived extracellular proteome of wheat roots by profiling root tip mucilage, soluble root secreted and root tip proteomes. Extracellular acid phosphatases and enzymes of the central carbon metabolism were targeted using selected reaction monitoring. More than 140 proteins with extracellular localisation prediction were identified in mucilage. P starvation induced proteins predicted to be localised to the apoplast which are related to cell wall modification and defence in both, root tip and soluble root-secreted proteomes. Glycolytic enzymes were strongly increased in abundance by P limitation in root tips, as were PEPC and plastidial MDH. Soluble acid phosphatases were not identified in extracellular protein samples. Our results indicate that root tip mucilage contains proteins with the functional potential to actively shape their immediate environment by modification of plant structural components and biotic interactions. Wheat acid phosphatases appear to play a minor role in P mobilisation beyond the immediate root surface. SignificancePhosphorus (P) is a plant growth limiting nutrient in many agricultural situations and the development of phosphorus efficient crops is of paramount importance for future agricultural management practices. As P is relatively immobile in soils, processes occurring at the root-soil interface, the rhizosphere, are suspected to play a key role in plant-induced P mobilisation. According to the current view, the secretion of extracellular acid phosphatases and organic anions enhances P mobilisation within several millimetres beyond the root surface, either directly or indirectly through the selection and appropriate soil microbes. However, the mechanisms of P mobilisation in species with fine roots, such as wheat, and the role of other secreted root proteins are poorly understood. Here, we carried out the profiling of wheat root tip mucilage, soluble root secreted and root tip proteomes. We analysed proteome changes in response to P starvation. We found that proteins with a predicted localisation to the apoplast made up a major proportion of stress-responsive proteins. Acid phosphatases were not identified within extracellular protein samples, which were enriched in proteins with predicted extracellular localisation. The absence of extracellular APases was further validated by multiple reaction monitoring. Our data indicates that wheat acid phosphatases play a minor role in P mobilisation beyond the immediate root surface and provides a resource for breeding strategies and further investigations of the functional roles of root tip-released proteins in the rhizosphere under P limitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call