Abstract

For a compact manifold M ofdim M=n≥4, we study two conformal invariants of a conformal class C on M. These are the Yamabe constant YC(M) and the Ln/2-norm WC(M) of the Weyl curvature. We prove that for any manifold M there exists a conformal class C such that the Yamabe constant YC(M) is arbitrarily close to the Yamabe invariant Y(M), and, at the same time, the constant WC(M) is arbitrarily large. We study the image of the mapYW:C→(YC(M), WC(M))∈R 2 near the line {(Y(M), w)|w∈R}. We also apply our results to certain classes of 4-manifolds, in particular, minimal compact Kähler surfaces of Kodaira dimension 0, 1 or 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.