Abstract

The universal Teichm\"uller space is an infinitely dimensional generalization of the classical Teichm\"uller space of Riemann surfaces. It carries a natural Hilbert structure, on which one can define a natural Riemannian metric, the Weil-Petersson metric. In this paper we investigate the Weil-Petersson Riemannian curvature operator $\tilde{Q}$ of the universal Teichm\"uller space with the Hilbert structure, and prove the following: (i) $\tilde{Q}$ is non-positive definite. (ii) $\tilde{Q}$ is a bounded operator. (iii) $\tilde{Q}$ is not compact; the set of the spectra of $\tilde{Q}$ is not discrete. As an application, we show that neither the Quaternionic hyperbolic space nor the Cayley plane can be totally geodesically immersed in the universal Teichm\"uller space endowed with the Weil-Petersson metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.