Abstract
This chapter evaluates the Weil algebra and the Weil model. The Weil algebra of a Lie algebra g is a g-differential graded algebra that in a definite sense models the total space EG of a universal bundle when g is the Lie algebra of a Lie group G. The Weil algebra of the Lie algebra g and the map f is called the Weil map. The Weil map f is a graded-algebra homomorphism. The chapter then shows that the Weil algebra W(g) is a g-differential graded algebra. The chapter then looks at the cohomology of the Weil algebra; studies algebraic models for the universal bundle and the homotopy quotient; and considers the functoriality of the Weil model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.