Abstract
The weighted Weiss conjecture states that the system theoretic property of weighted admissibility can be characterized by a resolvent growth condition. For positive weights, it is known that the conjecture is true if the system is governed by a normal operator; however, the conjecture fails if the system operator is the unilateral shift on the Hardy space $${H^2(\mathbb{D})}$$ (discrete time) or the right-shift semigroup on $${L^2(\mathbb{R}_+)}$$ (continuous time). To contrast and complement these counterexamples, in this paper, positive results are presented characterizing weighted admissibility of linear systems governed by shift operators and shift semigroups. These results are shown to be equivalent to the question of whether certain generalized Hankel operators satisfy a reproducing kernel thesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.