Abstract
Kaiser's iterative algorithm for the varimax rotation fails when (a) there is a substantial cluster of test vectors near the middle of each bounding hyperplane, leading to non-bounding hyperplanes more heavily overdetermined than those at the boundaries of the configuration of test vectors, and/or (b) there are appreciably more thanm (m factors) tests whose loadings on one of the factors of the initialF-matrix, usually the first, are near-zero, leading to overdetermination of the hyperplane orthogonal to this initialF-axis before rotation. These difficulties are overcome by weighting the test vectors, giving maximum weights to those likely to be near the primary axes, intermediate weights to those likely to be near hyperplanes but not near primary axes, and near-zero weights to those almost collinear with or almost orthogonal to the first initialF-axis. Applications to the Promax rotation are discussed, and it is shown that these procedures solve Thurstone's hitherto intractable “invariant” box problem as well as other more common problems based on real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.