Abstract

The complexity of a graph can be obtained as a derivative of a variation of the zeta function [S. Northshield, A note on the zeta function of a graph, J. Combin. Theory Ser. B 74 (1998) 408–410] or a partial derivative of its generalized characteristic polynomial evaluated at a point [D. Kim, H.K. Kim, J. Lee, Generalized characteristic polynomials of graph bundles, Linear Algebra Appl. 429 (4) (2008) 688–697]. A similar result for the weighted complexity of weighted graphs was found using a determinant function [H. Mizuno, I. Sato, On the weighted complexity of a regular covering of a graph, J. Combin. Theory Ser. B 89 (2003) 17–26]. In this paper, we consider the determinant function of two variables and discover a condition that the weighted complexity of a weighted graph is a partial derivative of the determinant function evaluated at a point. Consequently, we simply obtain the previous results and disclose a new formula for the complexity from a variation of the Bartholdi zeta function. We also consider a new weighted complexity, for which the weights of spanning trees are taken as the sum of weights of edges in the tree, and find a similar formula for this new weighted complexity. As an application, we compute the weighted complexities of the product of the complete graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call