Abstract
Cyclic codes have efficient encoding and decoding algorithms. The decoding error probability and the undetected error probability are usually bounded by or given from the weight distributions of the codes. Most researches are about the determination of the weight distributions of cyclic codes with few nonzeros, by using quadratic forms and exponential sums but limited to low moments. In this paper, we focus on the application of higher moments of the exponential sums to determine the weight distributions of a class of ternary cyclic codes with three nonzeros, combining with not only quadratic forms but also MacWilliamsâ identities. Another application of this paper is to emphasize the computer algebra system Magma for the investigation of the higher moments. In the end, the result is verified by one example using Matlab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.