Abstract

AbstractLifetime data collected from reliability tests are among data that often exhibit significant heterogeneity caused by variations in manufacturing, which makes standard lifetime models inadequate. Finite mixture models provide more flexibility for modeling such data. In this paper, the Weibull‐log‐logistic mixture distributions model is introduced as a new class of flexible models for heterogeneous lifetime data. Some statistical properties of the model are presented including the failure rate function, moments generating function, and characteristic function. The identifiability property of the class of all finite mixtures of Weibull‐log‐logistic distributions is proved. The maximum likelihood estimation (MLE) of model parameters under the Type I and Type II censoring schemes is derived. Some numerical illustrations are performed to study the behavior of the obtained estimators. The model is applied to the hard drive failure data made by the Backblaze data center, where it is found that the proposed model provides more flexibility than the univariate life distributions (Weibull, Exponential, logistic, log‐logistic, Frechet). The failure rate of hard disk drives (HDDs) is obtained based on MLE estimates. The analysis of the failure rate function on the basis of SMART attributes shows that the failure of HDDs can have different causes and mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.