Abstract

Diamond-like carbon (DLC) films were deposited on stainless steel (SUS), titanium (Ti) and nickel titanium (Ni-Ti) substrates using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the substrates were exposed to O2 and N2 plasma to enhance the adhesion strength of the DLC film to the substrate. After the plasma pre-treatment, the chemical composition and the wettability of the substrate surface was investigated by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated substrates. The XPS results showed that the N2 and O2 plasma pre-treatment produced nitride and oxide on the substrate surfaces, such as TiO2, TiO, Fe2O3, CrN and TiNO. In the pull-out test, the adhesion strengths of the DLC film to the SUS, Ti and Ni-Ti substrates were improved with the plasma pre-treatment. In the ball-on-disc test, the DLC coated SUS, Ti and Ni-Ti substrates without the plasma pre-treatment showed severe film failure following the test. The DLC coated SUS and Ni-Ti substrates with the N2 plasma pre-treatment showed good wear resistance, compared with that with the O2 plasma pre-treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call