Abstract

Abstract An extension of Dijkstra's guarded command language is studied, including unbounded demonic choice and a backtrack operator. We consider three orderings on this language: a refinement ordering defined by Back, a new deadlock ordering, and an approximation ordering of Nelson. The deadlock ordering is in between the two other orderings. All operators are monotonic in Nelson's ordering, but backtracking is not monotonic in Back's ordering and sequential composition is not monotonic for the deadlock ordering. At first sight recursion can only be added using Nelson's ordering. We show that, under certain circumstances, least fixed points for non-monotonic functions can be obtained by iteration from the least element. This permits the addition of recursion even using Back's ordering or the deadlock ordering in a fully compositional way. In order to give a semantic characterization of the three orderings that relates initial states to possible outcomes of the computation, the relation between predicate transformers and discrete power domains is studied. We consider (two versions of) the Smyth power domain and the Egli-Milner power domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.