Abstract
An extension of the waveform relaxation (WR) algorithm to systems of differential/algebraic equations (DAE) is presented. Although this type of application has been explored earlier in relation to VLSI circuits, the algorithm has not been generalized to include the vast array of DAE system structures. The solvability and convergence requirements of the WR algorithm for higher-index systems are established. Many systems in robotics and control applications are modeled with DAE systems having an index greater than two. Computer simulation of these systems has been hampered by numerical integration methods which perform poorly and must be explicitly tailored to the system. The WR algorithm presents a means by which these systems may be more efficiently simulated by breaking them into weakly coupled subsystems, many of which will no longer retain the limiting high-index properties.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.