Abstract

In quantum mechanics, the wave function predicts probabilities of possible measurement outcomes, but not which individual outcome is realized in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce quantum mechanics violate statistical independence. Theories with this property are commonly referred to as superdeterministic or retrocausal. Finally, we explain how this interpretation helps make sense of some otherwise puzzling phenomena in quantum mechanics, such as the delayed choice experiment, the Elitzur–Vaidman bomb detector and the extended Wigner’s friends scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.