Abstract

A new method of wood moisture sorption analysis is presented using sorption isotherms of a series of mildly heat-treated specimens with varied and known elemental composition. This method allows the determination of the occupancy of accessible sorption sites in wood as a function of relative humidity h, θ(h) ≈ h, found in agreement with the literature data on the non-freezing water occupancy of hydroxyl groups for h < 0.9. Complementary sorption isotherm shape analysis identifies an empirical power law occupancy function, θ(h) = h α , α ≈ 0.73, which is close to the former two determinations in the same humidity range. The validity of widely accepted surface sorption theories for wood with a strongly bound primary layer and loosely bound secondary layers is disproven. To explain the found occupancy function, θ(h) ≈ h, a near-ideal liquid mixture of moisture and polar dynamic microvoids in the cell wall substance is postulated. The power law occupancy function is used to calculate the humidity-dependent number of sorption sites in adsorption/desorption isotherms to show that (1) the number of sorption sites from the adsorption line monotonically increases with increasing humidity—argued to represent the equilibrium number of sorption sites at each humidity, and (2) the number of sorption sites from the desorption line fails to fully return to that of the (equilibrium) adsorption line. Hysteresis is quantitatively explained as the result of non-equilibrium excess sorption sites being occupied according to the occupancy law. The relaxation of non-equilibrium excess sorption sites is satisfactorily modeled by a first-order rate equation. Applying the analysis to study mild thermal modification of moisture sorption isotherms revealed that (1) moisture contents decrease directly linear to the removed amount of sorption sites at all humidity <0.95, and (2) the absolute hysteresis is nearly unaffected as a result of counter-acting effects of the reduced number of sorption sites and reduced amount of relaxation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call