Abstract

Lake Taihu, the third largest fresh water lake in China, with a surface area of 2 338 km<sup>2</sup>, is located in the Changjiang River Delta, the most advanced economic zone in China. During the last two decades, the rapid economic development of local agriculture and industry both in the urban and rural areas of the region has made great advances. Great quantieis of pollutants have been discharged into the lake, its nutrient content has increased continuously, and phytoplankton blooms have occurred in some areas. Water quality protection in Lake Taihu is very important because of its close relation with economical development and people's daily life. It is urgent to have comprehensive pollution control in Lake Taihu. Based on water quality monitoring data in Lake Taihu from 1987 to 1994, the dynamic variations of water quality and eutrophication trends have been analyzed, showing obvious spatial and temporal variations. The main water quality factors were compared with the standard for drinking water and indicate considerable change with the seasons. Some basic strategies to protect water quality and prevent eutrophication are discussed.;Lake Taihu, the third largest fresh water lake in China, with a surface area of 2 338 km<sup>2</sup>, is located in the Changjiang River Delta, the most advanced economic zone in China. During the last two decades, the rapid economic development of local agriculture and industry both in the urban and rural areas of the region has made great advances. Great quantieis of pollutants have been discharged into the lake, its nutrient content has increased continuously, and phytoplankton blooms have occurred in some areas. Water quality protection in Lake Taihu is very important because of its close relation with economical development and people's daily life. It is urgent to have comprehensive pollution control in Lake Taihu. Based on water quality monitoring data in Lake Taihu from 1987 to 1994, the dynamic variations of water quality and eutrophication trends have been analyzed, showing obvious spatial and temporal variations. The main water quality factors were compared with the standard for drinking water and indicate considerable change with the seasons. Some basic strategies to protect water quality and prevent eutrophication are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.