Abstract

In a fish farm, the water quality is important to ensure fish growth and farm productivity. However, the study of the quality of water using in aquaculture has been ignored until now. Although there are several methods to treat water, nanomaterials have not yet been applied for indoor fish farming because it may difficult to supply a sufficient amount of water, and the operating parameters have not been developed for recirculating aquaculture systems. Nanotechnology can be applied to treat water, specifically through adsorption and filtration, to produce drinking water from surface water and to treat wastewater by processing a high volume of effluent. The adsorption and filtration of seawater has also progressed to allow for desalination of seawater, and this is recognized as a necessary tool for extended treatment protocols of various types of seawater. This study investigated the treatment of aquaculture water using nano-porous adsorbents (e.g., pumice stone) to control the contaminants in seawater in order to maintain the water quality required for aquaculture. The results are used to derive an analytical relationship between the ionic species in aquaculture water, and this provides empirical parameters for a batch reactor for aquaculture. The quality of the influent and effluent for aquaculture is compared using time-series analyses to evaluate the reduction rate of ionic components and thus suggest the optimum condition for fish farming using bioreactor processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.