Abstract

A previous study of the water monomer on the basal faces of ice is extended to consider the interaction of the water molecule with a rigid prism face of ice and with an ice basal face ledge. The effective central force H2O–H2O potentials of Stillinger and Rahman are used to generate maximal binding energy surfaces for the H2O adsorbed on the sample substrates. The results indicate that the prism face of ice binds the water molecule more strongly than the basal faces, and the step on the basal face serves to expose high binding sites on the prism face and multiple bonding configurations at the base of the ledge. Bonding on all the substrates is preferred at sites not directly above water molecules in the first or second layer. Average maximal binding energies on the prism and ledge surfaces are 9 kcal/mol compared to a value of 8 kcal/mol on the (unpolarized) basal face. Optimal bonding configuration for the adsorbed water moment are also presented. Barriers to diffusion between maximal binding sites are 2.5 and 3.0 kcal/mol on the basal and prism faces, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.