Abstract

Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

Highlights

  • Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland

  • In recent years, rising interest in biofuel production has resulted both from the increase in oil prices and new U.S and E.U. energy policies mandating a certain degree of reliance on renewable energy as a strategy to curb greenhouse gas (GHG) emissions from the transport sector[2,3,4]

  • Biofuels may contribute to the enhancement of energy security in countries lacking direct access to fossil fuel deposits, the reduction of greenhouse gas (GHG) emissions, and a more profitable use of crops than in the food market where the same agricultural products would often be less valued

Read more

Summary

Bioethanol Biodiesel

(see Methods); in these conditions the population size would be P = 4.8 billion people, which would decrease to P = 4.4 billion people with b = 0.20 and P = 2.5 billion people with 100% reliance on biofuels for transport energy (b = 1) Despite their being based only on average yields and consumption rates, these calculations allow us to relate population size to its food and energy demand, and dependency on fossil fuels. These results highlight how the societal reliance on fossil fuels cannot be reverted by first generation bioethanol without undermining the food security of human societies. The potential development of second and third generation biofuels is an important step in the direction of mitigating the food-biofuel competition through new technologies relying on agricultural waste

Methods
Findings
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.