Abstract

This study addresses the water quantity and quality implications of greenhouse gas mitigation efforts in agriculture and forestry. This is done both through a literature review and a case study. The case study is set in the Missouri River Basin (MRB) and involves integration of a water hydrology model and a land use model with an econometric model estimated to make the link. The hydrology model (Soil and Water Assessment Tool, SWAT) is used to generate a multiyear, multilocation dataset that gives estimated water quantity and quality measures dependent on land use. In turn, those data are used in estimating a quantile regression model linking water quantity and quality with climate and land use. Additionally, a land use model (Forest and Agricultural Sector Optimization Model with Greenhouse Gases, FASOMGHG) is used to simulate the extent of mitigation strategy adoption and land use implications under alternative carbon prices. Then, the land use results and climate change forecasts are input to the econometric model and water quantity/quality projections developed. The econometric results show that land use patterns have significant influences on water quantity. Specifically, an increase in grassland significantly decreases water quantity, with forestry having mixed effects. At relatively high quantiles, land use changes from cropped land to grassland reduce water yield, while switching from cropping or grassland to forest yields more water. It also shows that an increase in cropped land use significantly degrades water quality at the 50% quantile and moving from cropped land to either forest or pasture slightly improves water quality at the 50% quantile but significantly worsens water quality at the 90% quantile. In turn, a simulation exercise shows that water quantity slightly increases under mitigation activity stimulated by lower carbon prices but significantly decreases under higher carbon prices. For water quality, when carbon prices are low, water quality is degraded under most mitigation alternatives but quality improves under higher carbon prices.

Highlights

  • The Intergovernmental Panel on Climate Change (IPCC) [1] indicates greenhouse gas emissions (GHGEs) are a main driver of climate change, and the agriculture and forestry (AF) sector can alter operations to reduce net emissions [2,3,4,5,6,7,8]

  • The average water quantity is around 7.2 mm per sub-basin per month, which is close to the value reported at the 75% quantile, meaning that 75% of the SWAT-generated Missouri River Basin (MRB) water quantities are below average

  • The average water quality index is around 19 and we find that 88% of the observations exhibit a lower quality index than that with about half having the worst quality index value (WQI = 10)

Read more

Summary

Introduction

The Intergovernmental Panel on Climate Change (IPCC) [1] indicates greenhouse gas emissions (GHGEs) are a main driver of climate change, and the agriculture and forestry (AF) sector can alter operations to reduce net emissions [2,3,4,5,6,7,8]. AF may manipulate enterprise management to reduce cropping-, livestock-, or forest-based emissions. AF may enhance sequestration by creating or expanding land-based sinks, retaining more of the carbon that cycling in and out of AF each year. This is done by reducing tillage intensity, altering land use towards less disturbed regimes, reducing deforestation, enhancing forest management, and pursuing afforestation [11,12]. AF may develop and utilize technical advances that increase yields while not increasing GHGEs, reducing emissions per unit produced and allowing less land to be used to produce a given amount and perhaps less input use [14]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call