Abstract

Water networks as critical infrastructures typically feature emergency electricity generators for bridging short power blackouts. We propose to combine these black start capable generators with available distributed energy resources (DERs) in the power grid, often photovoltaic generation, to jointly restore both the electricity and the water grid in the case of emergencies. This is mutually beneficial for both notworks since common grid-following inverters of DERs cannot supply power without a grid-forming nucleus. We model both grids as a coupled graph and formulate a stochastic mixed-integer linear program to determine optimal switch placement and/or optimal switching sequences jointly for both networks. Limited fuel and power availabilities, grid-forming constraints, storages, and an even distribution of available resources are considered. By minimizing the number of switching devices and switching events we target manual operability. The proposed method extends the time that can be bridged until a full restoration of the main power grid is achieved. For a small example, we demonstrate that given enough solar radiation our solution allows us to extend the water supply duration by a factor of two, compared to using the emergency generators only for the water network, while additionally almost half of the electricity demands can be resupplied. Algorithmic scaling is validated with a combination of the IEEE 123-bus test feeder and the D-Town water network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.