Abstract

This paper examines the Wasserstein metric between the empirical probability measure of n discrete random variables and a continuous uniform measure in the d-dimensional ball, providing an asymptotic estimation of their expectations as n approaches infinity. Furthermore, we investigate this problem within a mixed process framework, where n discrete random variables are generated by the Poisson process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.