Abstract
Nonlinear sigma models are quantum field theories describing, in the large deviation sense, random fluctuations of harmonic maps between a Riemann surface and a Riemannian manifold. Via their formal renormalization group analysis, they provide a framework for possible generalizations of the Hamilton–Perelman Ricci flow. By exploiting the heat kernel embedding introduced by Gigli and Mantegazza, we show that the Wasserstein geometry of the space of probability measures over Riemannian metric measure spaces provides a natural setting for discussing the relation between nonlinear sigma models and Ricci flow theory. In particular, we analyze the embedding of Ricci flow into a heat kernel renormalization group flow for dilatonic nonlinear sigma models, and characterize a non-trivial generalization of the Hamilton–Perelman version of the Ricci flow. We discuss in detail the monotonicity and gradient flow properties of this extended flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.