Abstract

The quantitative description of turbulent flows is known to be severely hampered by the extremely rapid variations in the mean and higher-order statistics in the near-wall region. Some very early studies [1, 2, 3] showed that the basic structure of an attached turbulent boundary layer consists of a viscous wall layer, in which the turbulent and laminar stresses are of comparable magnitude, and a defect layer, in which the velocity profile may be expressed in terms of a small perturbation to the external flow solution [4]. Also, [1, 2, 3] showed that this structure naturally leads to a universal velocity solution that has logarithmic behavior and depends on the velocity and length scales based on the friction velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.