Abstract

Persistent postsurgical pain affects 20% of youth undergoing a surgical procedure, with females exhibiting increased prevalence of chronic pain compared with males. This study sought to examine the sexually-dimorphic neurobiological changes underlying the transition from acute to persistent pain following surgery in adolescence. Male and female Sprague Dawley rats were randomly allocated to a sham or injury (plantar-incision surgery) condition and assessed for pain sensitivity while also undergoing magnetic resonance imaging at both an acute and chronic timepoint within adolescence. We found that injury resulted in persistent pain in both sexes, with females displaying most significant sensitivity. Injury resulted in significant gray matter density increases in brain areas including the cerebellum, caudate putamen/insula, and amygdala and decreases in the hippocampus, hypothalamus, nucleus accumbens, and lateral septal nucleus. Gray matter density changes in the hippocampus and lateral septal nucleus were driven by male rats whereas changes in the amygdala and caudate putamen/insula were driven by female rats. Overall, our results indicate persistent behavioral and neurobiological changes following surgery in adolescence, with sexually-dimorphic and age-specific outcomes, highlighting the importance of studying both sexes and adolescents, rather than extrapolating from male adult literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call