Abstract
When multiplicative noises are used to protect values of a sensitive attribute in a microdata, it is frequently assumed that data intruders use the noise-multiplied value to estimate the corresponding unobservable original value of a target record. In this paper, we show that, data intruders could easily construct another estimate instead of using the noise-multiplied value to attack an original value. The new estimate, namely “correlation-attack” estimate, is obtained by exploiting the potentially high correlation between the noise-multiplied data and the original data. We provide a detailed comparison between the two estimates (noise-multiplied value and the correlation-attack estimate) by comparing the mean squared errors of the two underlying estimators, and we propose that data providers should always assess the disclosure risks from both estimators when generating noise-multiplied data. Correspondingly, we propose a disclosure risk measure which could be used by data providers for noise generating variable selection during data masking stage. A simulation study is provided to illustrate how the disclosure risk measure could help with noise generating variable selection for masking a set of original data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.