Abstract

In Escherichia coli K-12, the Dcm methyltransferase catalyses methylation of the inner cytosine residue in the sequence CCA/TGG. Hydrolytic deamination of 5-methylcytosine bases in DNA leads to thymine residues, and hence to T/G mismatches, pre-mutagenic DNA lesions consisting of two natural DNA constituents and thus devoid of an obvious marker of the damaged DNA strand. These mismatches are corrected by the VSP repair pathway, which is characterized by very short patches of DNA repair synthesis. It depends on genes vsr and polA and is strongly stimulated by mutL and mutS. The vsr gene product (Vsr; Mr 18,000) was purified and characterized as a DNA mismatch endonuclease, a unique and hitherto unknown type of enzyme. Vsr endonuclease nicks double-stranded DNA within the sequence CTA/TGN or NTA/TGG next to the underlined thymidine residue, which is mismatched to 2'-deoxyguanosine. The incision is mismatch-dependent and strand-specific. These results illustrate how Vsr endonuclease initiates VSP mismatch repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.