Abstract

We show that a certain class of vortex blob approximations for ideal hydrodynamics in two dimensions can be rigorously understood as solutions to the equations of second-grade non-Newtonian fluids with zero viscosity and initial data in the space of Radon measures M (R 2). The solutions of this regularized PDE, also known as the isotropic Lagrangian averaged Euler or Euler-α equations, are geodesics on the volume preserving diffeomorphism group with respect to a new weak right invariant metric. We prove global existence of unique weak solutions (geodesics) for initial vorticity in M (R 2) such as point-vortex data, and show that the associated coadjoint orbit is preserved by the flow. Moreover, solutions of this particular vortex blob method converge to solutions of the Euler equations with bounded initial vorticity, provided that the initial data is approximated weakly in measure, and the total variation of the approximation also converges. In particular, this includes grid-based approximation schemes as are common in practical vortex computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.