Abstract

Red blood cells (RBCs) are vital for transporting oxygen from the lungs to the body’s tissues through the intricate circulatory system. They achieve this by binding and releasing oxygen molecules to the abundant hemoglobin within their cytosol. The volume of RBCs affects the amount of oxygen they can carry, yet whether this volume is optimal for transporting oxygen through the circulatory system remains an open question. This study explores, through high-fidelity numerical simulations, the impact of RBC volume on advective oxygen transport efficiency through arterioles, which form the area of greatest flow resistance in the circulatory system. The results show that, strikingly, RBCs with volumes similar to those found in vivo are most efficient to transport oxygen through arterioles. The flow resistance is related to the cell-free layer thickness, which is influenced by the shape and the motion of the RBCs: at low volumes, RBCs deform and fold, while at high volumes, RBCs collide and follow more diffuse trajectories. In contrast, RBCs with a healthy volume maximize the cell-free layer thickness, resulting in a more efficient advective transport of oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call