Abstract
We investigate a possibility to describe the non-Debye relaxation processes using the Volterra-type equations with kernels given by the Prabhakar functions with the upper parameter ν being negative. Proposed integro-differential equations mimic the fading memory effects and are explicitly solved using the umbral calculus and the Laplace transform methods. Both approaches lead to the same results valid for admissible domain of the parameters α, μ and ν characterizing the Prabhakar function. For the special case α ∈ (0, 1], μ=0 and ν=−1 we recover the Cole-Cole model, in general having a residual polarization. We also show that our scheme gives results equivalent to those obtained using the stochastic approach to relaxation phenomena merged with integral equations involving kernels given by the Prabhakar functions with the positive upper parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.