Abstract

The fast outer hair cell (OHC) electromotility is voltage dependent and is driven by changes in the OHC transmembrane potential. Those changes include the receptor potential generated by the variable conductance of the mechanoelectrical transducer (Evans and Dallos, 1993). In the experiments described here, we show that the voltage dependence of the mechanoelectrical transducer influences the low frequency motile responses of OHCs to an external electrical field. OHCs were fully inserted into a glass suction pipette, the microchamber, so that only the cuticular plate and hair bundle were exposed to the bath solution. With this technique, a rectification of the mechanical response, equivalent to an excitatory displacement of the hair bundle, was observed when the command voltage inside the microchamber depolarized the apical membrane. The shape of the response persisted when the OHC voltage-gated conductances were blocked. Following treatment of the hair bundle with BAPTA or dihydrostreptomycin, which are known to impair transduction function (Assad et al., 1991; Kroese et al., 1989), rectification of the motile response disappeared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.