Abstract

Ventricular myocytes, isolated from the guinea-pig, were stimulated to contract by 100 ms long voltage clamp pulses from -80 to 0 mV at 0.5 and 3 Hz. An increase in frequency from 0.5 to 3 Hz led to a positive inotropic effect. Contraction-voltage relationships (CVR) were determined at each frequency. The CVR at 0.5 Hz was bell shaped and peaked between 0 and +20 mV, displaying a voltage dependence similar to the L-type Ca2+ current (ICa). At 3 Hz, contractions continued to increase at positive voltages, giving a more sigmoidal CVR. At 0.5 Hz, TTX reduced the size of steady-state contractions to 91 +/- 2% of control values, but had no effect on the shape of the CVR. At 3 Hz, TTX significantly reduced (P < 0.05) the magnitude of contractions at positive voltages (> or = +20 mV) but had no significant effect on contractions at voltages negative to 0 mV. These data illustrate that intracellular sodium activity (aNa(i)) and, in particular, Na+ entry due to the sodium current (INa) are important in determining the voltage dependence of contraction at positive voltages. Thapsigargin (2.5 microM), a blocker of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, reduced the size of steady-state contractions at 0 mV to 65 +/- 7% at 0.5 Hz. Increasing frequency to 3 Hz abolished the positive inotropy seen under control conditions. With thapsigargin present, contractions at 0.5 Hz were reduced at all potentials and the CVR was bell shaped. At 3 Hz the CVR was sigmoidal in shape. Contractions were significantly inhibited by thapsigargin at all potentials, but most significantly at more positive potentials (> or = +20 mV). These data show that, at normal body temperature, the shape of the CVR of guinea-pig ventricular myocytes changes with stimulation rate. Due to the voltage dependence of ICa, contractions evoked at positive voltages at 3 Hz must be supported by other mechanisms. The sensitivity of such contractions to TTX and thapsigargin suggests the involvement of both a Na(+)-dependent process and the SR. One possibility is that when aiNa and the Ca2+ content of the SR are raised at higher stimulation rates, enhanced Ca2+ entry via reverse Na(+)-Ca2+ exchange leads to a direct activation of the myofilaments and, to a lesser extent, the release of Ca2+ from the SR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call