Abstract
Context. The Large Magellanic Cloud (LMC) is the most luminous satellite galaxy of the Milky Way and, owing to its companion, the Small Magellanic Cloud (SMC), represents an excellent laboratory to study the interaction of dwarf galaxies. Aims. The aim of this study is to investigate the kinematics of the outer regions of the LMC by using stellar proper motions to understand the impact of interactions, for example with the SMC about 250 Myr ago. Methods. We calculate proper motions using multi-epoch Ks-band images from the VISTA survey of the Magellanic Cloud system (VMC). Observations span a time baseline of 2−5 yr. We combine the VMC data with data from the Gaia Early Data Release 3 and introduce a new method to distinguish between Magellanic and Milky Way stars based on a machine learning algorithm. This new technique enables a larger and cleaner sample selection of fainter sources as it reaches below the red clump of the LMC. Results. We investigate the impact of the SMC on the rotational field of the LMC and find hints of stripped SMC debris. The south-eastern region of the LMC shows a slow rotational speed compared to the overall rotation. N-body simulations suggest that this could be caused by a fraction of stripped SMC stars located in that particular region that move opposite to the expected rotation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.