Abstract
Aims. We analyze the multiplicity properties of the massive O-type star population. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods. We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. Results. We observe a spectroscopic binary fraction of 0.35\pm0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20km/s. We compute the intrinsic binary fraction to be 0.51\pm0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f_P ~ (log P)^\pi\ (with 0.15 < log P < 3.5) and f_q ~ q^\kappa\ with 0.1 < q=M_2/M_1 < 1.0. The power-law indexes that best reproduce the observed quantities are \pi = -0.45 +/- 0.30 and \kappa = -1.0\pm0.4. The obtained period distribution thus favours shorter period systems compared to an Oepik law. The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function. The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8', i.e. approx117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. Conclusions. Using simple evolutionary considerations, we estimate that over 50% of the current O star population in 30 Dor will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.