Abstract

The stellar population of the 30 Doradus star-forming region in the Large Magellanic Cloud contains a subset of apparently single, rapidly rotating O-type stars. The physical processes leading to the formation of this cohort are currently uncertain. One member of this group, the late O-type star VFTS 399, is found to be unexpectedly X-ray bright for its bolometric luminosity - in this study we aim to determine its physical nature and the cause of this behaviour. We find VFTS 399 to be an aperiodic photometric variable with an apparent near-IR excess. Its optical spectrum demonstrates complex emission profiles in the lower Balmer series and select HeI lines - taken together these suggest an OeBe classification. The highly variable X-ray luminosity is too great to be produced by a single star, while the hard, non-thermal nature suggests the presence of an accreting relativistic companion. Finally, the detection of periodic modulation of the X-ray lightcurve is most naturally explained under the assumption that the accretor is a neutron star. VFTS 399 appears to be the first high-mass X-ray binary identified within 30 Dor. Comparison of the current properties of VFTS 399 to binary-evolution models suggests a progenitor mass in excess of 25Msun for the putative neutron star, which may host a magnetic field comparable in strength to those of magnetars. VFTS 399 is now the second member of the cohort of rapidly rotating `single' O-type stars in 30 Dor to show evidence of binary interaction resulting in spin-up, suggesting that this may be a viable evolutionary pathway for the formation of a subset of this stellar population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.