Abstract
Aims. Using ground based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Doradus (30 Dor). Methods. We measured projected rotational velocities, \vrot, by means of a Fourier transform method and a profile fitting method applied on a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, $\rm{P(\veq)}$, of the equatorial rotational velocity, \veq. Results. The distribution of \vrot\ shows a two-component structure: a peak around 80 \kms\ and a high-velocity tail extending up to $\sim$600 \kms. This structure is also present in the inferred distribution $\rm{P(\veq)}$ with around 80% of the sample having 0 $<$ \veq\, $\leq\, 300$ \kms\ and the other 20% distributed in the high-velocity region. Conclusions. Most of the stars in our sample rotate with a rate less than 20%\ of their break-up velocity. For the bulk of the sample, mass-loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Despite the fact that we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. The fact that the high-velocity tail may be preferentially (and perhaps even exclusively), populated by post-binary interaction products, has important implications for the evolutionary origin of systems that produce gamma-ray bursts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.