Abstract

We study the initial–boundary value problem for the Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions. We first prove the existence of weak solutions of the linearized equation in an interval with absorbing boundary conditions. Moreover, the weak solution converges to zero exponentially in time. Then we extend the above results to the fully nonlinear Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions; the existence and the longtime behavior of weak solutions. Finally, we prove that the weak solution is actually a classical solution by showing the hypoellipticity of the solution away from the grazing set and the Hölder continuity of the solution up to the grazing set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.