Abstract

Vitamin B₆ is an essential cofactor for a large number of enzymes in both prokaryotes and eukaryotes. In this study, we characterized the pyridoxal 5'-phosphate (PLP) biosynthesis pathway in Streptococcus pneumoniae. Our results revealed that S. pneumoniae possesses a de novo vitamin B₆ biosynthesis pathway encoded by the pdxST genes. Purified PdxS functionally displayed as PLP synthase, whereas PdxT exhibited glutaminase activity in vitro. Deletion of pdxS, but not pdxT, resulted in a vitamin B₆ auxotrophic mutant. The defective growth of the ΔpdxS mutant in a vitamin B₆-depleted medium could be chemically restored in the presence of the B₆ vitamers at optimal concentrations. By analyzing PdxS expression levels, we demonstrated that the expression of pdxS was repressed by PLP and activated by a transcription factor, PdxR. A pneumococcal ΔpdxR mutant also exhibited as a vitamin B₆ auxotroph. In addition, we found that disruption of the vitamin B₆ biosynthesis pathway in S. pneumoniae caused a significant attenuation in a chinchilla middle ear infection model and a minor attenuation in a mouse pneumonia model, indicating that the impact of vitamin B₆ synthesis on virulence depends upon the bacterial infection niche.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.