Abstract

Cerium oxide (CeO(2)) nanoparticles display excellent antioxidant properties by scavenging free radicals. However, some studies have indicated that they can cause an adverse response by generating reactive oxygen species (ROS). Hence, it is important to clarify the factors that affect the oxidant/antioxidant activities of CeO(2) nanoparticles. In this work, we report the effects of different buffer anions on the antioxidant activity of CeO(2) nanoparticles. Considering the main anions present in the body, Tris-HCl, sulfate, and phosphate buffer solutions have been used to evaluate the antioxidant activity of CeO(2) nanoparticles by studying their DNA protective effect. The results show that CeO(2) nanoparticles can protect DNA from damage in Tris-HCl and sulfate systems, but not in phosphate buffer solution (PBS) systems. The mechanism of action has been explored: cerium phosphate is formed on the surface of the nanoparticles, which interferes with the redox cycling between Ce(3+) and Ce(4+). As a result, the antioxidant activity of CeO(2) nanoparticles is greatly affected by the external environment, especially the anions. These results may provide guidance for the further practical application of CeO(2) nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.