Abstract

We tested the hypothesis that N/OFQ neurones in the arcuate nucleus (N/OFQARC ) inhibit proopiomelanocortin (POMCARC ) neurones in a diet- and hormone-dependent manner to promote a more extensive rebound hyperphagia upon re-feeding following an 18h fast. We utilized intact male or ovariectomized (OVX) female mice subjected to ad libitum-feeding or fasting conditions. N/OFQARC neurones under negative energy balance conditions displayed heightened sensitivity as evidenced by a decreased rheobase threshold, increased firing frequency, and increased burst duration and frequency compared to ad libitum-feeding conditions. Stimulation of N/OFQARC neurones more robustly inhibited POMCARC neurones under fasting conditions compared to ad libitum-feeding conditions. N/OFQARC inhibition of POMCARC neurones is hormone dependent as chemostimulation of N/OFQARC neurones from fasted males and OVX females produced a sizable outward current in POMCARC neurones. Oestradiol (E2 ) markedly attenuated the N/OFQ-induced POMCARC outward current. Additionally, N/OFQ tonically inhibits POMCARC neurones to a greater degree under fasting conditions than in ad libitum-feeding conditions as evidenced by the abrogation of N/OFQ-nociceptin opioid peptide (NOP) receptor signalling and inhibition of N/OFQ release via chemoinhibition of N/OFQARC neurones. Intra-arcuate nucleus application of N/OFQ further elevated the hyperphagic response and increased meal size during the 6 h re-feed period, and these effects were mimicked by chemostimulation of N/OFQARC neurones in vivo. E2 attenuated the robust N/OFQ-induced rebound hyperphagia seen in vehicle-treated OVX females. These data demonstrate that N/OFQARC neurones play a vital role in mitigating the impact of negative energy balance by inhibiting the excitability of anorexigenic neural substrates, an effect that is diminished by E2 in females. KEY POINTS: Nociceptin/orphanin FQ (N/OFQ) promotes increased energy intake and decreased energy expenditure under conditions of positive energy balance in a sex- and hormone-dependent manner. Here it is shown that under conditions of negative energy balance, i.e. fasting, N/OFQ inhibits anorexigenic proopiomelanocortin (POMC) neurones to a greater degree compared to homeostatic conditions due to fasting-induced hyperexcitability of N/OFQ neurones. Additionally, N/OFQ promotes a sustained increase in rebound hyperphagia and increase in meal size during the re-feed period following a fast. These results promote greater understanding of how energy balance influences the anorexigenic circuitry of the hypothalamus, and aid in understanding the neurophysiological pathways implicated in eating disorders promoting cachexia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call