Abstract

The skylight degree of linear polarization (DoLP) was previously shown to vary primarily with aerosol optical depth and underlying surface reflectance for visible-to-near-infrared (VNIR) wavelengths. This paper extends the study of skylight polarization to 2.5μm in the short-wave infrared (SWIR). A successive-orders-of-scattering radiative transfer code was used to model skylight polarization with measured inputs that included aerosol properties retrieved from a ground-based solar radiometer (extrapolated into the SWIR) and spectral surface reflectance from a handheld spectrometer. The modeled DoLP depended heavily on the aerosol size distribution at SWIR wavelengths and on the aerosol optical depth at VNIR wavelengths. Once the aerosol optical depth became greater than the Rayleigh optical depth, the predicted polarization deviated significantly from Rayleigh scattering theory. The SWIR polarization spectrum generally decreased at wavelengths beyond 1μm at a rate dependent on the aerosol size distribution. The surface reflectance affected the polarization in the same manner throughout the visible (VIS)-SWIR spectrum, with higher reflectance decreasing the skylight polarization. Validation measurements of SWIR skylight polarization in a 1.5-1.8μm band are also shown. These measurements were made on clean and smoky days using a SWIR imaging polarimeter. In both simulations and measurements, the SWIR skylight polarization was greater in the smoky atmosphere than in the clean atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call