Abstract

Stationary finite-amplitude wave disturbances in a stratified shear flow with Richardson number larger than ¼ are investigated for large Reynolds numbers when viscosity and thermal conductivity, as well as nonlinearity, are essential factors in the critical layer. The jumps across the critical layer in average vorticity, reflection and transmission coefficients are calculated as functions of the local Reynolds number determined by the amplitude of the incident wave. With the increase of the incident wave amplitude the asymptotic value of the Richardson number on the same side of critical layer as the incident wave tends to 1/4 the reflection coefficient tends to unity and the transmission coefficient to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.