Abstract

Abstract The lowest order constrained variational ( LOCV ) method is used to evaluate the transport properties of normal liquid Helium-3 ( 3 He ) within the Landau–Abrikosov–Khalatnikov ( LAK ) formalism. The LOCV effective two-body interaction of the liquid Helium 3 is used to calculate the differential cross-section and the scattering probability, which is needed to solve the LAK equations. It is shown that, the choice of effective mass has crucial role on the resulting viscosity and thermal conductivity of normal liquid 3 He . Our LOCV - LAK calculations are compared with the other theoretical and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.