Abstract

Hypoxia contributes to the persistence of infections through altered immune responses. Studies examining skin O2 changes at the site of a lesion are limited. The prevailing methods require the use of electrochemical O2 sensors or radiolabeled electrodes that utilize O2 and may interfere with the precision at low O2 levels. In this issue, Mahnke et al. (2014) demonstrate, using a novel fluorescence-based imaging technology, that low oxygen tension (pO2) impairs NO-mediated anti-leishmanial immunity, leading to increased parasite burden. Replenishing tissue oxygen profoundly enhanced NO-mediated leishmanial killing, underscoring the need to accurately assess oxygenation in infected tissues as a novel strategy to challenge intracellular infection. The technology presented here may have clinical-translational potential in noninvasively assessing disease burden and response to treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.