Abstract

Methods for the experimental and clinical investigation of cardiac arrhythmias are limited to inferring propagation within the myocardium, from surface measurements, or from electrodes at a few sites within the cardiac wall. Biophysically and anatomically detailed computational models of cardiac tissues offer a powerful way for studying the electrical propagation processes and arrhythmias within the virtual heart. We use virtual tissues to study and visualise the effects of patho- and physiological conditions, and pharmacological interventions on transmural propagation in the virtual ventricular walls. Class III drug actions are quantitatively explained by changes induced in the transmural dispersion of action potential duration. We illustrate the automated construction of a virtual anisotropic ventricle from Diffusion Tensor MRI for individual hearts, and use it to explore mechanisms leading to ventricular fibrillation. The virtual ventricular wall provides an effective tool for exploring, evaluating and visualising processes during the initiation and maintenance of ventricular arrhythmias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call