Abstract

We propose a generic communication primitive designed for sensor networks. Our primitive hides details of network communication while retaining sufficient programmer control over the communication behavior of an application; it is designed to ease the burden of writing application-specific communication protocols for efficient, long-lived, fault-tolerant, and scalable applications. While classical network communication methods expect high-reliability links, our primitive works well in highly unreliable environments without needing to detect and prune unreliable links. Our primitive resembles the chemical markers used by many biological systems to solve distributed problems (pheromones). We develop and analyze the performance of an implementation of this primitive called Virtual Pheromone (VP). We demonstrate that VP can attain performance comparable to classical methods for applications such as sleep scheduling, routing, flooding, and cluster formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.