Abstract

BackgroundModels and simulations are finding increased roles in medical education. The Virtual Haptic Back (VHB) is a virtual reality simulation of the mechanical properties of the human back designed as an aid to teaching clinical palpatory diagnosis.MethodsEighty-nine first year medical students of the Ohio University College of Osteopathic Medicine carried out six, 15-minute practice sessions with the VHB, plus tests before and after the sessions in order to monitor progress in identifying regions of simulated abnormal tissue compliance. Students palpated with two digits, fingers or thumbs, by placing them in gimbaled thimbles at the ends of PHANToM 3.0® haptic interface arms. The interface simulated the contours and compliance of the back surface by the action of electric motors. The motors limited the compression of the virtual tissues induced by the palpating fingers, by generating counterforces. Users could see the position of their fingers with respect to the back on a video monitor just behind the plane of the haptic back. The abnormal region varied randomly among 12 locations between trials. During the practice sessions student users received immediate feedback following each trial, indicating either a correct choice or the actual location of the abnormality if an incorrect choice had been made. This allowed the user to feel the actual abnormality before going on to the next trial. Changes in accuracy, speed and Weber fraction across practice sessions were analyzed using a repeated measures analysis of variance.ResultsStudents improved in accuracy and speed of diagnosis with practice. The smallest difference in simulated tissue compliance users were able to detect improved from 28% (SD = 9.5%) to 14% (SD = 4.4%) during the practice sessions while average detection time decreased from 39 (SD = 19.8) to 17 (SD = 11.7) seconds. When asked in anonymous evaluation questionnaires if they judged the VHB practice to be helpful to them in the clinical palpation and manual medicine laboratory, 41% said yes, 51% said maybe, and 8% said no.ConclusionThe VHB has potential value as a teaching aid for students in the initial phases of learning palpatory diagnosis.

Highlights

  • Models and simulations are finding increased roles in medical education

  • Contours of the back were determined with a 3-D camera (Inspeck, 3-D Megacapturor II); tissue compliances were measured with a PHANToM 3.0 haptic interface fitted with a finger-sized probe through which force is applied stepwise while displacements were recorded [6]

  • The average mastery level improved from a Weber fraction of 0.28 to 0.14 over the six practice sessions (Figure 4), i.e, improvement from detection of only a 28% compliance difference to a 14% difference

Read more

Summary

Introduction

Models and simulations are finding increased roles in medical education. The Virtual Haptic Back (VHB) is a virtual reality simulation of the mechanical properties of the human back designed as an aid to teaching clinical palpatory diagnosis. Palpatory diagnosis plays an important role in medicine. Training is typically done in laboratory settings in which students work on each other with teacher-student ratios that make it difficult for students to get the level of feedback they desire as to whether they are feeling what they are supposed to be feeling. These settings seldom provide the range of ages and conditions typical of patient populations the students will eventually be treating

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.