Abstract

The social Simon effect (SSE) occurs if two participants share a Simon task by making a Go/No-Go response to one of two stimulus features. If the two participants perform this version of the Simon task together, a Simon effect occurs (i.e., performance is better with spatial stimulus–response correspondence), but no effect is observed if participants perform the task separately. The SSE has been attributed to the automatic co-representation of the co-actor's actions, which suggests that it relies on online information about the other's actions. To test this implication, we investigated whether the SSE varies with the presence and amount of online action-related feedback from the other person. Experiment 1 replicated the SSE with auditory stimuli. Experiment 2, in which participants were blindfolded, demonstrated that visual feedback from the other's actions is not necessary for the SSE to occur. Experiment 3 replicated Experiment 2 with a regular and a soundless keyboard. A comparable SSE was obtained in both conditions, suggesting that even auditory online input from the other's actions is not necessary. Taken together, our data suggest that the SSE does not rely on online information about the co-actor's actions but that a priori offline information about another actor's presence is sufficient to generate the effect.

Highlights

  • Humans are active agents who organize their behavior according to their plans and action goals

  • Median reaction times (RTs) for correct responses were entered into a two-way mixed ANOVA, with the independent variable Congruency as within-subjects factor and the independent variable Visual Feedback as between-subjects factor

  • There was neither a main effect of Visual Feedback (F(1,38) = 0.07, p = 0.8, η2 = 0.002), nor a significant interaction (F(1,38) = 1.04, p = 0.314, η2 = 0.03), suggesting that the Simon effects were equivalent in the two conditions (Table 2)

Read more

Summary

Introduction

Humans are active agents who organize their behavior according to their plans and action goals. Numerous studies have provided evidence that performing a movement creates associations between the underlying motor pattern and the sensory consequences that go along with executing this pattern (for an overview, see Hommel, 2009). This implies that our cognitive action representations are grounded in sensory experience, that is, in the perceptual consequences a given action was experienced to create. This perceptual grounding provides us with the means to carry out movements intentionally: we internally re-create the sensory experience of the action effects to some degree (in other words, we anticipate them) and thereby reactivate the associated motor pattern that will produce the anticipated effects in the external world (Elsner and Hommel, 2001; Hommel, 2009)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call